Theorie des matrices


Theorie des matrices

Théorie des matrices

En mathématiques, la théorie des matrices est une branche des mathématiques qui s'intéresse à l'étude des matrices. À l'origine, la théorie des matrices était considérée comme une branche secondaire de l'algèbre linéaire, mais s'agrandit pour bientôt couvrir des sujets relatifs à la théorie des graphes, à l'algèbre, à la combinatoire et aux statistiques.

Les matrices sont maintenant utilisées pour de multiples applications et servent notamment à représenter les coefficients des systèmes d'équations linéaires ou à représenter les applications linéaires ; dans ce dernier cas les matrices jouent le même rôle que les coordonnées d'un vecteur pour les applications linéaires.

Sommaire

Histoire

L'étude des matrices est tout à fait ancienne. Les carrés latins et les carrés magiques ont été étudiés depuis très longtemps. Leibniz, l'un des deux fondateurs de l'analyse, a développé la théorie des déterminants en 1693 pour faciliter la résolution des équations linéaires. Cramer a approfondi cette théorie, en présentant la méthode de Cramer en 1750. Dans les années 1800, la méthode d'élimination de Gauss-Jordan fut mise au point. Ce fut James Sylvester qui utilisa pour la première fois le terme « matrice Â» en 1850. Cayley, Hamilton, Hermann Grassmann, Frobenius et John von Neumann comptent parmi les mathématiciens célèbres qui ont travaillé sur la théorie des matrices.

En 1925, Werner Heisenberg redécouvre le calcul matriciel en fondant une première formulation de ce qui allait devenir la mécanique quantique. Il est à ce titre considéré comme l'un des pères de la mécanique quantique.

Introduction élémentaire

Article détaillé : Matrice (mathématiques).

Une matrice est un tableau rectangulaire de nombres. Une matrice peut être identifiée à une application linéaire entre deux espaces vectoriels de dimension finie. Ainsi la théorie des matrices est habituellement considérée comme une branche de l'algèbre linéaire. Les matrices carrées jouent un rôle particulier, parce que l'ensemble des matrices d'ordre n (n entier naturel non nul donné) possède des propriétés de « stabilité Â» des opérations.

Les concepts de matrice stochastique et de matrice doublement stochastique sont des outils importants pour étudier les processus stochastiques, en probabilité et en statistique.

Les matrices définies positives apparaissent dans la recherche de maximum et minimum de fonctions à valeurs réelles, et à plusieurs variables.

Il est également important de disposer d'une théorie des matrices à coefficients dans un anneau. En particulier, les matrices à coefficients dans l'anneau des polynômes sont utilisées en théorie de la commande.

En mathématiques pures, les anneaux de matrices peuvent fournir un riche champ de contre-exemples pour des conjectures mathématiques.

Matrice et graphe

En théorie des graphes, à tout graphe étiqueté correspond la matrice d'adjacence. Une matrice de permutation est une matrice qui représente une permutation ; matrice carrée dont les coefficients sont 0 ou 1, avec un seul 1 dans chaque ligne et chaque colonne. Ces matrices sont utilisées en combinatoire.

Dans la théorie des graphes, on appelle matrice d'un graphe la matrice indiquant dans la ligne i et la colonne j le nombre d'arêtes reliant le sommet i au sommet j. Dans un graphe non orienté, la matrice est symétrique. La somme des éléments d'une colonne permet de déterminer le degré d'un sommet. La matrice Mn indique dans la ligne i et la colonne j le nombre de chemins à n arêtes joignant le sommet i au sommet j.

Quelques théorèmes

Voir aussi

Liens externes

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Th%C3%A9orie des matrices ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Theorie des matrices de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Théorie des matrices — La théorie des matrices est une branche des mathématiques qui concerne l étude des matrices. À l origine, la théorie des matrices était considérée comme une branche secondaire de l algèbre linéaire, mais s agrandit pour bientôt couvrir des sujets …   Wikipédia en Français

  • Théorie des représentations — Représentation de groupe L idée générale de la théorie des représentations est d essayer d étudier un groupe G en le faisant agir sur un espace vectoriel V de manière linéaire : on essaie ainsi de voir G comme un groupe de matrices (d où le… …   Wikipédia en Français

  • Théorie des modules — Module sur un anneau Un module sur un anneau unitaire est une structure algébrique qui généralise celle d espace vectoriel et celle d idéal d un anneau. Dans un espace vectoriel l ensemble des scalaires forme un corps tandis que dans un module,… …   Wikipédia en Français

  • Theorie des representations d'un groupe fini — Théorie des représentations d un groupe fini Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d un groupe fini est un… …   Wikipédia en Français

  • Theorie des cordes — Théorie des cordes Les niveaux de grossissements : monde macroscopique, monde moléculaire, monde atomique, monde subatomique, monde des cordes. La théorie des cordes est l une des voies envisagées pour régler une des questions majeures de la …   Wikipédia en Français

  • Théorie des Groupes — Groupe (mathématiques) Pour les articles homonymes, voir Groupe.  Cet article concerne une introduction au concept de groupe. Pour un approfondissement, voir théorie des groupes …   Wikipédia en Français

  • Théorie des caractères d'un groupe fini — Caractère d une représentation d un groupe fini Fichier:Ferdinand Georg Frobenius.jpg Ferdinand Georg Frobenius fondateur de la théorie des caractères En mathématiques le caractère d une représentation d un groupes finis est un outil utilisé pour …   Wikipédia en Français

  • Théorie des caractères d'une représentation d'un groupe fini — Caractère d une représentation d un groupe fini Fichier:Ferdinand Georg Frobenius.jpg Ferdinand Georg Frobenius fondateur de la théorie des caractères En mathématiques le caractère d une représentation d un groupes finis est un outil utilisé pour …   Wikipédia en Français

  • Théorie des représentations d'un groupe fini — Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d un groupe fini traite des représentations d un groupe G dans le cas …   Wikipédia en Français

  • Pratique des matrices — Théorie des matrices En mathématiques, la théorie des matrices est une branche des mathématiques qui s intéresse à l étude des matrices. À l origine, la théorie des matrices était considérée comme une branche secondaire de l algèbre linéaire,… …   Wikipédia en Français


Share the article and excerpts

Direct link
… Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.