Algèbre simple


Algèbre simple

En mathématiques, une algèbre (unitaire associative) sur un corps commutatif est dite simple si son anneau sous-jacent est simple, c'est-à-dire s'il n'admet pas d'idéal bilatère autre que {0} et lui-même, et si de plus il n'est pas réduit à 0. Si A est un anneau simple, alors son centre est un corps commutatif K, et en considérant A comme un algèbre sur K, alors A est un algèbre simple sur K.

Par la suite, on désigne par K un corps commutatif, et toute algèbre sur K est supposée être de dimension finie sur K

Sommaire

Algèbre centrale simple

Une algèbre sur K est dite centrale si elle n'est pas réduite à 0 et si son centre est son sous-anneau K.1. Soit A une algèbre simple sur K. Alors le centre de A est surcorps (commutatif) Z de K, et alors A peut être considère comme une algèbre sur Z, et alors A est une algèbre simple centrale sur Z. Ainsi, une partie de l'étude des algèbres simples sur un corps commuattif se ramène à l'étude des algèbres centrales simples sur un corps commutatif.

On va ici étudier les algèbres simples centrales (ou algèbres centrales simple) sur K.

Exemples

  • K est une algèbre simple centrale sur K.
  • Pour tout entier n ≥ 1, l'algèbre Mn(K) des matrices carrée est une algèbre simple centrale.
  • Une K-algèbre à division centrale (de dimension finie) est une algèbre simple centrale. Ces algèbres sont les surcorps D de K dont le centre est K et qui sont de dimension finie sur K.
  • Soit D une algèbre à division centrale sur K. Alors, pour tout entier n ≥ 1, l'algèbre Mn(D) des matrices carrées d'ordre n sur D est une algèbre simple centrale sur K. Plus intrinsièquement, pour tout espace vectoriel E de dimension finie sur D, l'algèbre End(E) des endomorphismes de E est une algèbre simple centrale sur K.

On dit qu'une algèbre simple centrale sur K est déployée (split en anglais) s'il existe un entier n ≥ 1 tel que A est isomorphe à l'algèbre Mn(K) des matrices carrée d'ordre n.

Soit A une algèbre sur K. Il est équivalent de dire que:

  • A est une algèbre simple centrale sur K;
  • A est isomorphe à Mn(D), où n ≥ 1 et D est une algèbre à division centrale sur K ;
  • A est isomorphe à l'algèbre End(E) des endomorphismes de E, où E est un espace vectoriel de dimension finie non nulle sur D, où D est une algèbre à division centrale sur K.

Soient D et D' des algèbres à divisions centrales sur K, n et n' des entier ≥ 1. Pour que les algèbre Mn(D) et Mn'(D') soient isomorphes, il faut et il suffit que n = n' et que les algèbre D et D' soient isomorphes. Soit E et E' des espaces vectoriels de dimensions finies non nulles sur D et D' respectivement . Pour que les algèbres EndD(E) et EndD'(E') sur K soient isomorphes, il faut et il suffit que les corps algèbre D et D' sur K soient isomorphes et que les dimensions de E et E' soient égales.

La classification des algèbres simples centrales sur K se réduit donc à la classification des algèbres à division centrales sur K.

Soit A une algèbre simple centrale et M un modules de type fini sur A. Alors la K-algèbre des endomorphismes de M est une algèbre simple centrale sur K.

Exemples d'algèbres simples centrales sur certains corps commutatif

  • Sur le corps R des nombres réels, les algèbres simples centrales sont, à isomorphes près, les suivantes: Les algèbres de la forme Mn(R) et de la forme Mn(H), où H est le corps des quaternions. Plus intrinsèquement, ce sont les algèbres des endomorphismes des espaces vectoriels réels et quaternioniens de dimensions finies non nulles.
  • Si K est un corps algébriquement clos (par exemple si K est le corps C des nombres complexes) ou si K est un corps fini, les algèbres simples centrales sont, à isomorphismes près, celles de la forme Mn(K).

Propriétés des algèbres simples centrales

Les algèbres simples centrales sur K jouissent de plusieurs propriétés remarquables.

  • L'algèbre opposée d'une algèbre simple centrale sur K est une algèbre simple centrale.
  • Le produit tensoriel de deux (ou plus généralement d'une famille finie) d'algèbres simples centrales sur K est une algèbre simple centrale.
  • Si L est un surcorps commutatif de K, alors l'algèbre LK A sur L déduite de A par extension des scalaires de 'K à L est une algèbre simple centrale.

Théorème de Skolen-Noether

Soient A une algèbres simples centrales sur K et B une algèbre simple sur K. Quels que soient les homorphismes (unitaires) f et g de A dans B, il existe un élément inversible b de B tel que g(x) = bf(x)b-1, pour tout élément x de B (f et g sont donc conjugués).

En particulier, tout automorphisme de A est un automorphisme intérieur de A, c'est-à-dire qu'il est de la forme xaxa-1, où a est un élément inversible de A, et cet automorphisme est alors noté Inta. L'application a → Inta du groupe A* des éléments inversibles de A dans le groupes AutK(A) des automorphismes de K-algèbre A est surjectif, et sont noyau est le groupe K* des scalaires non nuls de K, et on obtient ainsi un isomorphisme de groupes de A*/K* sur AutK(A).

Soit D une algèbre à division centrale sur K et E un espace vectoriel de dimension finie n sur K. Alors le groupe des éléments inversibles de End(E) est le groupe linéaire GL(E) de E, et l'application f → Intf de GL(E) dans AutK(End(E) est un homomorphisme surjectif de noyau K, et on obtient ainsi il isomorphisme de GL(E)/K* sur AutK(End(E). Si n ≥ 2, alors le groupe GL(E)/K* est canoniquement isomorphe au groupe projectif de l' espace projectif P(E).

Degré d'une algèbre simple centrale

Soit A une algèbre simple centrale sur K. Alors la dimension de A sur K est un carré d2, et on appelle degré de A l'entier naturel d.

Corps neutralisant

Soient A une algèbre simple centrale sur K et d le degré de A. Il existe un surcorps commutatif L de K tel que la L-algèbre simple centrale LK A sur L déduite de A par extension des scalaires de K à L est déployée, c'est-à-dire isomorphe à Md(L), et on dit qu'un tel surcorps L de K est un corps neutralisant ou un corps de déploiement de A.

Exemples

  • Si A est déployée, alors K est un corps neutralisant de A.
  • Tout surcorps algébriquement clos de L (une clôture algébrique de K par exemple) est un corps neutralisant de A. Par exemple, si K est le corps R des nombres réels, C est un corps neutralisant de A.

Il existe un corps neutralisant L de A tel que la dimension de L est finie, et tel que L (considéré comme extension de corps de K) est extension galoisienne.

Soit D une algèbre à division centrale sur K. Alors il existe un élément maximal L pour la relation d'inclusion de l'ensemble des sous-corps de D qui sont commutatif. Alors L est un corps neutralisant de D, et plus généralement de Mn(D). Donc, pour tout espace vectoriel E de dimension finie sur D, L est un corps neutralisant de End(E).

Groupe de Brauer

Trace réduite et norme réduite

À un élément d'une algèbre simple centrale, on peut associé des scalaires qui généralise la trace, le déterminant, et un polynôme qui généralise et le polynôme caractéristique, des matrices carrées et des endomorphismes d'espaces vectoriels sur un corps commutatif.

Soient A une algèbre simple centrale sur K, d le degré de A, L un corps neutralisant de A et B = LK A la L-algèbre simple centrale déduite de A par extension des scalaire de K à L. Pour tout élément x de A et pour tout isomorphisme de L-algèbres h de B sur Md(L), le trace, le déterminant et le polynôme caractéristique de la matrice h(1 ⊗ x) de Md(L) ne dépendent que de A et de x (et non pas de L ou de h), et on les appelle trace réduite, norme réduite et polynôme caractéristique réduit de x dans A (sur K), et on les note TrdA/K(x), NrdA/K(x) et PrdA/K(x) respectivement.

Par exemple, si A = Md(K) ou A = EndK(E), où est un espace vectoriel de dimension finie non nul sur K, le trace réduit, la norme réduite et le polynôme caractéristique réduit d'un élément de A n'est autre que sa trace, son déterminant et son polynôme caractéristique de cette matrice ou de cet endomorphisme.

  • La fonction x → TrdA/K(x) de A dans K est une forme linéaire non identiquement nulle sur l'espace vectoriel A.
  • Quels que soient les éléments a et b de A, on a NrdA/K(ab) = NrdA/K(a)NrdA/K(b).
  • Pour qu'un élément a de A soit inversible dans A, il faut et il suffit que NrdA/K(a) soit non nul.
  • La fonction x → NrdA/K(x) du groupe A* des éléments inversibles de A dans K* est un homomorphisme de groupes, non nécessairement surjectif. (Il est surjectif sur A est déployé.)
  • Pour tout élément a de A et pour tout élément k de K, on a NrdA/K(ka) = kdNrdA/K(a).
  • Si le corps K est infini, alors la fonction x → NrdA/K(x) de A dans K est une fonction polynomiale homogène de degré d.
  • Le degré du polynôme caractéristique d'un élément de a de A est égal à d, et la trace réduite de a est le coefficient de Xn-1, et la norme réduite de a est le terme constant, multiplié par (-1)d.

Trace et déterminant d'un endomorphisme d'un espace vectoriel quaternionien

Soit E un espace vectoriel de dimension finie n sur le corps H des quaternions. Alors le degré de A = EndH(E) est 2d. Par restriction des scalaires, on peut considérer E comme un espace vectoriel complexe E0, et alors EndH(E) est une sous-algèbre unitaire réelle de l'algèbre simple centrale simple complexe EndC(E0). Pour tout endomorphisme f de E, la trace réduite, la norme réduite et le polynôme caractéristique réduit de l'élément f de A n'est autre que la trace, la norme et le polynôme caractéristique de l'élément f de EndC(E0), qui est alors un nombre réel positif ou nul.

Soit f un endomorphisme de E. On appelle trace de f et on note Tr f la trace réduite de f, divisée par 2. La norme réduite de f est un nombre réel positif, et on appelle alors déterminant de f et on note det f la racine carrée de la norme réduite de f.

Références

  • N. Bourbaki, Éléments de mathématique, Algèbre, chapitre 8.
  • Thomas Hungerford, Algebra, Springer-Verlag.
  • Nathan Jacobson, Basic Algebra II, W. H. Freeman and Compaby, New York, 1989.
  • Max-Albert Knus, Alexander Merkurjev, Markus Rost et Jean-Pierre Tignol, The Book of Involution, Americam Mathematical Society, 1998.

Articles connexes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Algèbre simple de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Algebre semi-simple — Algèbre semi simple En mathématiques et plus particulièrement en algèbre, une A algèbre L, où A désigne un anneau, est qualifiée de semi simple ou de complètement réductible si et seulement si la structure d anneau associé à L l est Elle est… …   Wikipédia en Français

  • Algèbre Semi-simple — En mathématiques et plus particulièrement en algèbre, une A algèbre L, où A désigne un anneau, est qualifiée de semi simple ou de complètement réductible si et seulement si la structure d anneau associé à L l est Elle est présente dans de… …   Wikipédia en Français

  • Algèbre semi-simple — En mathématiques et plus particulièrement en algèbre, une A algèbre L, où A désigne un anneau, est qualifiée de semi simple ou de complètement réductible si et seulement si la structure d anneau associé à L l est Elle est présente dans de… …   Wikipédia en Français

  • Algebre d'un groupe fini — Algèbre d un groupe fini En mathématiques, l algèbre d un groupe fini s inscrit dans le cadre de la théorie des représentations d un groupe fini. Une algèbre d un groupe fini est la donnée d un groupe fini, d un espace vectoriel de dimension l… …   Wikipédia en Français

  • Algèbre D'un Groupe Fini — En mathématiques, l algèbre d un groupe fini s inscrit dans le cadre de la théorie des représentations d un groupe fini. Une algèbre d un groupe fini est la donnée d un groupe fini, d un espace vectoriel de dimension l ordre du groupe et d une… …   Wikipédia en Français

  • Algèbre involutive simple — En mathématiques, une algèbre involutive simple sur un corps commutatif est une algèbre involutive qui n admet par d idéaux stable par l involution autre que {0} et elle même. Les algèbres involutives simples centrales (en un sens à préciser plus …   Wikipédia en Français

  • Algèbre séparable — En mathématiques, une algèbre séparable sur un corps commutatif K est une algèbre semi simple qui, par extension des scalaires à un surcorps, reste semi simple. Dans ce article, K désigne une corps commutatif, et les algèbres sur K sont supposées …   Wikipédia en Français

  • Algèbre de quaternions — En mathématiques, une algèbre de quaternions sur un corps commutatif est une algèbre de dimension 4 qui généralise à la fois le corps des quaternions et l algèbre des matrices carrées d ordre 2. Pour être plus précis, se sont les algèbres… …   Wikipédia en Français

  • Algebre de Lie — Algèbre de Lie En mathématiques, une algèbre de Lie, nommée en l honneur du mathématicien Sophus Lie, est un espace vectoriel (parfois même une algèbre) qui est munie d un crochet de Lie. Sommaire 1 Définitions, exemples et premières propriétés 1 …   Wikipédia en Français

  • Algèbre De Lie — En mathématiques, une algèbre de Lie, nommée en l honneur du mathématicien Sophus Lie, est un espace vectoriel (parfois même une algèbre) qui est munie d un crochet de Lie. Sommaire 1 Définitions, exemples et premières propriétés 1.1 Définition …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.