Logique Modale

Logique Modale

Logique modale

La logique modale est une logique à laquelle on a ajouté des modificateurs, qu’on pourrait comprendre en grammaire comme des adverbes.

Par exemple, on peut modifier la proposition « Il pleut » comme ceci :

  • Il est possible qu’il pleuve,
  • Il est démontré qu’il est faux qu’il pleuve,
  • Il n’est pas permis qu’il pleuve,
  • Alice sait qu’il pleut.

Cette proposition peut donc être respectivement modifiée avec les modes possible, démontré que ne pas, n’est pas permis, Alice sait.

Sommaire

Différentes logiques modales

Le carré modal : relations entre les modalités de la logique aristotélicienne

Il existe plusieurs types de logiques modales, dont les modes sont :

  • classiques (ou aristotéliciens, ou aléthiques) :
  • épistémiques (relatifs à la connaissance) :
    • connu par l'agent i, noté Ci
    • contestable
    • exclu
    • plausible
    • connaissance commune du groupe G d'agents, notée CKG
    • connaissance partagée du groupe G d'agents, notée EKG (chacun sait)
  • déontiques (moraux) :
    • obligatoire, noté O
    • interdit, noté I
    • permis, noté P
    • facultatif, noté F
  • temporels :
    • toujours, noté \Box
    • un jour, noté \Diamond
    • jamais, noté \neg \Diamond
    • demain, noté X
    • jusqu'à ce que, opérateur binaire noté U
    • désormais, noté G
    • un jour futur, noté F
    • toujours dans le passé, noté H
    • un jour passé, noté P
  • doxastiques (sur les croyances) :
    • cru, noté B
    • croyance commune du groupe G d'agents, notée CBG
  • contrefactuels :
    • Si A était vrai, où l'on sait que A n'est pas vrai.
  • dynamiques (effet d'actions, notées a, sur des propositions) :
    • Il existe une exécution de a tel qu'après a, p est vrai, noté \langle a\rangle p
    • p est vrai après toute exécution de a, noté [a]p.

Logique modale aléthique

En logique modale aléthique (ou aristotélicienne, ou classique), nous pouvons exprimer les quatre opérateurs à l’aide d’un seul (ici la nécessité) et de la négation. Ainsi:

  • impossible est \square \neg
  • possible est \neg \square \neg

Une proposition nécessaire ne peut pas être fausse sans impliquer de contradiction, a contrario d’une proposition contingente qui peut impliquer une contradiction.

La logique intuitionniste peut être construite sur la logique aléthique comme une logique modale.

Axiomes de logique modale

Chaque logique modale est munie d'une série d'axiomes qui définissent le fonctionnement des modalités. Une logique modale est dite normale ou de Kripke si et seulement si elle admet

  • (RN) (ou (N) ou (NEC)) la règle d'inférence de nécessitation :
Si A est un théorème, alors \Box A aussi.
  • (K) l'axiome de distribution de Kripke :
\Box(A\rightarrow B) \rightarrow( \Box A \rightarrow \Box B)

En ajoutant d'autres types d'axiomes on obtient d'autre types de logiques modales :

  • (D) : \Box P \rightarrow \Diamond P soit la nécessité implique la possibilité (en logique aristotélicienne)
  • (T) (ou (M)): P \rightarrow \Diamond P soit le fait implique la possibilité
  • (4) : \Box p\rightarrow\Box\Box p
  • (B) : p\rightarrow\Box\Diamond p
  • (5) (ou (E)) : \Diamond p\rightarrow\Box\Diamond p

Ces axiomes permettent de définir les systèmes suivants :

  • K:=K+RN
  • T:=K+T
  • S4:=T+4
  • S5:=S4+B ou T+5
  • D:=K+D

La suite de systèmes K à S5 forme une hiérarchie imbriquée qui compose le noyau de la logique modale normale. L'axiome D, quant à lui, est principalement utilisé dans les logiques déontique, doxastique et épistémique.

Modèles de la logique modale

Article détaillé : Sémantique de Kripke.

Les modèles de Kripke, ou modèles de mondes possibles, donnent une sémantique aux logiques modales. Notons W l'ensemble des monde possible et R une relation binaire entre les mondes possibles appelée relation d'accessibilité. Une valuation v affecte à chaque variable propositionelle une valeur de vérité et ce pour chaque monde possible. v(A,w) dénote la valeur de vérité de la proposition A dans le monde w.

La sémantique d'un opérateur modal est définie à partir d'une relation d'accessibilité de la façon suivante :

v(\square A,w) \text{ ssi } v(A,w') \text{ pour tout } w' \text{ tel que } wRw'

Classification des systèmes de logique modale

Les systèmes de logiques modales sont organisés en fonction des règles d'inférence et des axiomes qui les caractérisent.

Logiques modales classiques

Les systèmes de logique modale classiques sont ceux qui acceptent la règle d'inférence suivante :

(RE) \frac{A \leftrightarrow B}{\Box A \leftrightarrow \Box B}

L'usage veut que l'on donne à un tel système un nom canonique du type E \xi_1 \xi_2 \cdots \xi_n, où les ξi sont les noms des axiomes du systèmes.

Logiques modales monotones

Les systèmes de logique modale monotones sont ceux qui acceptent la règle d'inférence RM :

(RM) \frac{A \to B}{\Box A \to \Box B}

L'ensemble des systèmes monotones est inclus dans l'ensemble des systèmes classiques.

Logiques modales régulières

Les systèmes de logique modale réguliers sont ceux qui acceptent la règle d'inférence RR :

(RR) \frac{(A \wedge B) \to C}{(\Box A \wedge \Box B) \to \Box C}

L'ensemble des systèmes réguliers est inclus dans l'ensemble des systèmes monotones.

Logiques modales normales

Les systèmes de logique modale normaux sont ceux qui acceptent la règle d'inférence RK :

(RK) \frac{(A_1 \wedge \cdots A_n) \to B}{(\Box A_1 \wedge \cdots \Box A_n) \to \Box B}

L'ensemble des systèmes normaux est inclus dans l'ensemble des systèmes réguliers.

Une définition équivalente et plus courante des systèmes normaux est la suivante : un système de logique modal est dit normal s'il comporte l'axiome (K) et accepte la règle de nécessitation (RN) comme règle d'inférence :

(K) \Box (A \to B) \to (\Box A \to \Box B)

(RN) \frac{A}{\Box A}

Les systèmes normaux sont les plus utilisés, car ce sont ceux qui correspondent aux sémantiques de Kripke. Il est cependant possible de trouver des sémantiques pour des logiques classiques non normales, mais elles présentent en général de moins bonnes propriétés.

Voir aussi

Articles connexes

Liens externes

(en) James Garson, Modal Logic, The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.), 2007.

Bibliographie

  • (en) Patrick Blackburn, Maarten de Rijke et Yde Venema, Modal Logic, 2001 [détail des éditions]
  • (en) Brian F. Chellas, Modal logic, an introduction, 1980 [détail des éditions] 
  • Portail de la logique Portail de la logique
  • Portail de la philosophie Portail de la philosophie
  • Portail de la philosophie analytique Portail de la philosophie analytique

Ce document provient de « Logique modale ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Logique Modale de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Logique modale — ● Logique modale système de logique qui comporte, en sus des connecteurs et quantificateurs de la logique classique, deux opérateurs unaires de modalité, l un pour la nécessité (« il est nécessaire que… »), l autre pour la possibilité (« il est… …   Encyclopédie Universelle

  • Logique modale — La logique modale est une logique à laquelle on a ajouté des modificateurs, qu’on pourrait comprendre en grammaire comme des adverbes. Par exemple, on peut modifier la proposition « Il pleut » comme ceci : Il est possible qu’il… …   Wikipédia en Français

  • Logique Déontique — La logique déontique (du grec déon, déontos : devoir, ce qu il faut, ce qui convient) tente de formaliser les rapports qui existent entre les quatre alternatives d une loi : l obligation, l interdiction, la permission et le facultatif.… …   Wikipédia en Français

  • Logique deontique — Logique déontique La logique déontique (du grec déon, déontos : devoir, ce qu il faut, ce qui convient) tente de formaliser les rapports qui existent entre les quatre alternatives d une loi : l obligation, l interdiction, la permission… …   Wikipédia en Français

  • LOGIQUE (HISTOIRE DE LA) — Ce n’est qu’à une époque relativement récente qu’on a vraiment commencé à s’intéresser à l’histoire de la logique. Jusqu’au milieu du XIXe siècle régnait en effet l’idée que la logique n’avait pas d’histoire, étant, pour l’essentiel, sortie… …   Encyclopédie Universelle

  • Logique epistemique — Logique épistémique La logique épistémique est la logique de la connaissance d agents pris individuellement. Son nom vient du verbe grec epistémei qui signifie savoir, qui a aussi produit le mot épistémologie. Ses créateurs sont E. J. Lemmon and… …   Wikipédia en Français

  • Logique Épistémique — La logique épistémique est la logique de la connaissance d agents pris individuellement. Son nom vient du verbe grec epistémei qui signifie savoir, qui a aussi produit le mot épistémologie. Ses créateurs sont E. J. Lemmon and Jaakko Hintikka.… …   Wikipédia en Français

  • Logique Temporelle — Les différentes logiques temporelles sont des logiques mathématiques et plus précisément des logiques modales. Intuitivement, cela signifie que la notion de vérité dans ces logiques dépend de l évolution du monde. C est à dire qu une proposition… …   Wikipédia en Français

  • Logique Intuitionniste — L intuitionnisme est une position philosophique vis à vis des mathématiques proposée par le mathématicien hollandais Luitzen Egbertus Jan Brouwer comme une alternative à l approche dite classique. Elle a été ensuite formalisée, sous le nom de… …   Wikipédia en Français

  • Logique formelle — Logique Gregor Reisch, « La logique présente ses thèmes centraux », Margarita Philosophica, 1503/08 (?). Les deux chiens veritas et falsitas courent derrière le lièvre problema, la logique se presse armée de son épée syllogismus. En bas …   Wikipédia en Français


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.